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In this paper, hybrid variational principles are employed for piezoelectric "nite
element formulation. Starting from eight-node hexahedral elements with
displacement and electric potential as the nodal d.o.f.s, hybrid models with
assumed stress and electric displacement are devised. The assumed stress and
electric displacement are chosen to be contravariant with the minimal 18 and seven
modes respectively. The pertinent coe$cients can be condensed at the element level
and do not enter the system equation. A number of benchmark tests are exercised.
The predicted results indicate that the assumed stress and electric displacements
are e!ective in improving the element accuracy.

( 1999 Academic Press
1. INTRODUCTION

Piezoelectric materials have been indispensable for electrochemical resonators,
transducers, sensors, actuators and adaptive structures. Owing to the complexity of
the governing equations in piezoelectricity, only a few simple problems such as
simply supported beams and plates can be solved analytically [1}4]. Since Allik
and Hughes [5] presented their work on "nite element (f.e.) method for
piezoelectric vibration analysis, the method has been the dominating practical tool
for design and analysis of piezoelectric devices and adaptive structures. Inheriting
Allik and Hughes'work, all of the f.e. models presented in references [6}22] include
displacement and electric potential as the only assumed "eld variables. Other "elds
such as stress, electric displacement, etc., are derived from displacement and electric
potential. These models and the associated formulation can be classi"ed as
irreducible in the sense that the number of "eld variables cannot be further reduced
sThis work was conducted when the second author was visiting the University of Hong Kong as
esearch associate.
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[23]. Same as the irreducible or displacement elements in structural mechanics,
irreducible piezoelectric elements are often too sti!, susceptible to mesh distortion
and aspect ratio. To overcome these drawbacks, Tzou and Tseng [14], Ha et al.
[16] and Tzou [17] made use of bubble/incompatible displacement modes [24, 25]
to improve the eight-node hexahedral element.

In addition to the bubble/incompatible displacement method hybrid (or
reducible) variational principles in structural mechanics have been successfully
employed for enhancing the element accuracy and circumventing various locking
phenomena [26}41]. In this light, Ghandi and Hagood [42] have proposed
a piezoelectric hybrid tetrahedral "nite element model in which electric
displacement, electric potential and displacement are assumed. Their model is
markedly superior to the irreducible model. Besides reference [42], hybrid
variational principles have rarely been used in formulating piezoelectric "nite
element models.

In this paper, we shall start with a general hybrid variational principle that
contains stress, strain, displacement, electric displacement, electric "eld and electric
potential as the independently assumed "eld variables. It will be seen that the
stationary conditions of the functional are the nine governing equations in linear
piezoelectricity. For domain decomposition methods such as the f.e. method, the
prerequisities and the continuity requirements on the "eld variables assumed in the
principle are addressed. Four degenerated versions of the general principle are
adopted for f.e. formulation. Judging from the results obtained for a number of
benchmark problems, the proposed hybrid models are more accurate than the
irreducible ones.

2. GOVERNING EQUATIONS IN LINEAR PIEZOELECTRICITY

For a solid piezoelectric body occupying domain X, the governing equations are
summarized below [43, 44].

(i) strain}displacement relation: c"D
m
u in X ; (1)

(ii) electric "eld}electric potential relation: E"!D
%
/ in X ; (1b)

(iii) constitutive relations: G
s
DH"C

c
E
e

!eT
ec D G

c
EH in X; (1c)

(iv) stress equilibrium condition: DT
m
s#b"0 in X ; (1d)

(v) charge conservation condition: DT
e
D"0 in X ; (1e)

(vi) mechanical natural boundary condition: n
m
s"t6 on S

t
; (1f )
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(vii) electric natural boundary condition: n
e
D"uN on Su ; (1g)

(viii) mechanical essential boundary condition: u"u6 on S
u
; (1h)

(ix) electrical essential boundary condition: /"/M on S
(
; (1i)

where c"Mc
xx

, c
yy

, c
zz

, 2c
xy

, 2c
yz

, 2c
zx

NT is the vector of strain components,
u"Mu

x
, u

y
, u

z
NT is the displacement, E"ME

x
, E

y
, E

z
NT is the electric "eld,

s"Mq
xx

, q
yy

, q
zz

, q
xy

, q
yz

, q
zz

NT is the vector of stress components, D"

MD
x
, D

y
, D

z
NT is the electric displacement, b1 "MbM

x
, bM

y
, bM

z
NT is the boy force,

t6"MtN
x
, tN

y
, tN

z
NT is the prescribed traction, u6 "MuN

x
, uN

y
, uN

z
NT is the prescribed

displacement, c
E
"cT

E
is the elasticity matrix measured at constant electric "eld, e is

the piezoelectric matrix measured at constant strain, ec"eTc is the dielectric matrix
measured at constant strain,

D
e
"

L/Lx

L/Ly

L/Lz

, D
m
"

L/Lx 0 0 L/Ly 0 L/z

0 L/Ly 0 L/x L/Lz 0

0 0 L/Lz 0 L/Ly L/Lx

T

,

n
m
"

n
x

0 0 n
y

0 n
z

0 n
y

0 n
x

n
z

0

0 0 n
z

0 n
y

n
x

, n
e
"

n
x

0 0

0 n
y

0

0 0 n
z

,

Mn
x
, n

y
, n

z
NT is the unit outward normal vector to the boundary LX of domain X.

It will be assumed as usual that the boundary LX of the domain X can be
partitioned according to the boundary conditions into S

t
, S

u
, Su and S

(
such that

S
t
WS

u
"SuWS

(
"null, S

t
XS

u
"SuXS

(
"LX. (2)

It is noteworthy that c and -E are the energy conjugates of s and D respectively. By
changing the objects in the constitutive relations, the following alternate forms can
be obtained:

G
c
EH"C

c
E
e

!eT
ee D

~1

G
s
DH"C

s
D

!g
gT

fp D G
s
DH , (3a)

G
s
EH"C

c
E
#eTe~1c e
!e~Tc e

!(e~Tc e)T
fc D G

c
DH"C

c
D

!h
!hT

fc D G
c
DH . (3b)

3. A GENERAL VARIATIONAL PRINCIPLE FOR PIEZOELECTRICITY

A few researchers have investigated the variational principles for piezoelectric
bodies [43, 44]. The most general variational principle that includes all the six
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assumed "eld variables is

P
G
"PXC

1
2 G

c
!EH

T

C
c
E
e

eT
!ecD G

c
!EH!G

s
DH

T

AG
c

!EH!G
D

m
u

D
e
/HB!b1 TuD dv

!P
St

t6 Tu ds!P
Su

/uN ds!P
Su

(n
m
s)T (u!u6 ) ds!P

S(

(n
e
D)T(/!/M ) ds, (4)

where

1
2 G

c
!EH

T

C
c
E
e

eT
!ecD G

c
!EH"H(c,!E)

is known as the electric enthalpy. By recalling the divergence theorems, we have

PX

(duDT
m
s#sTD

m
du) dv"PLX

(n
m
s)Tdu ds, (5a)

PX

(d/DT
e
D#DTD

e
d/) dv"PLX

(n
e
D)Td/ ds, (5b)

in which d is the variational symbol. Variation of P
G

can then be worked out as

dP
G
"PX CG

dc
!dEH

T

AC
c
E
e

eT
!ecD G

c
!EH!G

s
DHB!G

ds
dDH

T

AG
c

!EH!G
D

m
u

D
e
/HB

!G
du
d/H

T

G
DT

m
s#b1

DT
e
D HD dv#P

St

(n
e
s!t6 )Tdu ds#P

Su

(n
e
D!uN )d/ ds

!P
Su

(n
m
ds)T (u!u6 ) ds!P

S(

(n
e
dD)T(/!/M ) ds. (6)

The generalization of the functional can be seen as its Euler's equations include all
the nine governing equations in equation (1).

4. DOMAIN DECOMPOSITION

We now consider the piezoelectric domain X be decomposed into two
subdomains X1 and X2 as shown in Figure 1. Let superscripts be used for
subdomain designation and S

12
be the subdomain interfacial for X1 and X2, it will

be assumed that

S1
t
XS2

t
"S

t
, S1

u
XS2

u
"S

u
, S1uXS2u"Su , S1

(
XS2

(
"S

(
. (7a)



Figure 1. A piezoelectric domain X (left) and it sub-domain X1 and X2 (right), S
12

is the sub-domain
interface.
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Moreover,

X1XX2"X, Si
t
XSi

u
XS

12
"SiuXSi

(
XS

12
"LXi for i"1, 2. (7b)

The governing equations after decomposing the domain are

(i) ci"D
m
ui in Xi, (ii) Ei"!D

e
/i in Xi,

(iii) G
si
DiH"C

ci
E
ei

!(ei)T
!eic D G

ci

EiH in Xi, (8a)

(iv) DT
m
si#b1 "0 in Xi, (v) DT

e
Di"0, in Xi, (vi) ni

m
si"t6 on Si

t
, (8b)

(vii) ni
e
Di"uN on Siu , (viii) ui"u6 on Si

u
, (ix) /i"/M on Si

(
, (8c)

(x) mechanical reciprocity condition: n1
m
s1#n2

m
s2"0 on S

12
, (8d)

(xi) electric reciprocity condition: n1
e
D1#n2

e
D2"0 on S

12
, (8e)

(xii) mechanical compatibility condition: u1"u2 on S
12

, (8f )

(xiii) electric compatibility condition: /1"/2 on S
12

(8g)

for i"1 and 2. Compared to equation (1), there are four extra conditions to be
satis"ed on the subdomain interface S

12
. With X"X1XX2, P

G
in equation (4) can

be expressed as

P
G
"P1

G
#P2

G
, (9)
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where

Pi
G
"PXiC

1
2G

ci
!EiH

T

C
ci
E
ei

(ei)T
!eicD G

ci
!EiH!G

si
DiH

T

AG
ci

!EiH!G
D

m
ui

D
e
/iHB!(b1 )TuiDdv

!P
Si
t

t6 Tui ds!P
Siu

/iuN ds!P
Si
u

(ni
m
si)T(ui!u6 ) ds!P

Si(

(ni
e
Di)T(/i!/M ) ds.

By invoking equation (5) and (7),

dP
G
"

2
+
i/1
APXiCG

dci

!dEiH
T

AC
ci
E
ei

(ei)T
!eicD G

ci

!EiH!G
si
DiHB!G

dsi
dDiH

T

]AG
ci

!EiH!G
D

m
ui

D
e
/iHBD dv!PXi G

dui

d/iH
T

G
DT

m
si!b1

DT
e
Di H dv

#P
Si
t

(ni
m
si!t6 )Tduids#P

Siu

(ni
e
Di!uN )d/ids!P

Si
u

(ni
m
dsi)T (ui!u6 ) ds

!P
Si
(

(ni
e
dDi)T(/i!/M ) ds#P

S12

[(ni
m
si)Tdui#(ni

e
Di)d/i] dsB . (10)

By constraining the two compatibility conditions, we have

u1"u2, du1"du2, /1"/2 and d/1"d/2 on S
12

, (11)

with which the last term in dP
G

can be expressed as

2
+
i/1
P
S12

[(ni
m
si)Tdui#(ni

e
Di)d/i] ds"P

S12

[(n1
m
s1#n2

m
s2)Tdu1#(n1

e
D1#n2

e
D2)d/1] ds.

(12)

Hence, with the two compatibility conditions satis"ed as a priori, Euler's equations
of P

G
include the "rst 11 conditions in equation (8). In other words, zeroth order

continuity of the displacement and electric potential at the subdomain interface
must be ensured when P

G
is employed. There is no continuity requirement on the

other "eld variables at the subdomain interface, i.e., the two sets of "eld variables in
the two subdomains can be totally independent of each other. The arguments
presented here can readily be generalized to multiply subdomains such as in f.e.
meshes.

5. DEGENERATED VARIATIONAL PRINCIPLES

In the f.e. method, the two essential boundary conditions can be satis"ed by
having displacement and electric potential as the nodal variables. With the two
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conditions constrained, P
G

is simpli"ed to

P
mG

"PXC
1
2 G

c
!EH

T

C
c
E
e

eT
!ecD G

c
!EH!G

s
DH

T

AG
c

!EH!G
D

m
u

D
e
/HB!b1 TuD dv

!P
Si

t6 Tu ds!P
Su

/uN dS
(
. (13)

In this paper, four variation functionals having degenerated from P
mG

will be
employed for "nite element formulation.

(I) Functional with only u and / assumed2With the electric "eld}potential
relation E"!D

e
/ and the strain}displacement relation c"D

m
u constrained, the

assumed stress, strain, electric "eld and electric displacement can be eliminated
from P

mG
. The resulting functional is

P"PX A
1
2 G

D
m
u

D
e
/H

T

C
c
E
e

eT
!ecD G

D
m
u

D
e
/H!b1 TuB dv!P

St

t6 Tu ds!P
S(

/uN ds. (14)

This gives rise to the irreducible formulation in piezoelectricity [5, 23].
(II) Functional with D, u and / assumed2With the strain}displacement relation

c"D
m
u and the constitutive relation D"ec#ecE constrained, the assumed

stress, strain and electric "eld can be eliminated from P
mG

. The resulting functional
is

P
D
"PX C

1
2 G

D
m
u

D H
T

C
c
D

!h
!hT

!fc D G
D

m
u

D H#DTD
e
/!b1 1 TuD dv

!P
St

t6 Tu ds!P
Su

/uN ds. (15)

(III) Functional with s, u and / assumed*With the electric "eld}potential
relation E"!D

e
/ and the constitutive relation sGc

E
c!eTE constrained, strain,

electric "eld and electric displacement can be eliminated from P
mG

. The resulting
functional is

Pq"PXA
!1
2 G

s
D

e
/H

T

C
s
E

!d
!d
eq DG

s
D

e
/H#sTD

m
u!b11 TuB dv!P

St

t6 Tu ds

!P
S(

/uN ds. (16)

(IV) Functional with s, D, u and / assumed*With the constitutive relations
s"c

E
c!eTE and D"ec#ecE constrained, the assumed strain and electric "eld
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can be eliminate from P
mG

. The resulting functional is

P
Dq"PXA

!1
2 G

s
DH

T

C
S
D
g

gT

!fqD G
s
DH#G

s
DH

T

G
D

m
u

D
e
/H!b1 1 TuB dv

!P
St

t6 Tu ds!P
Su

/uN ds, (17)

where

1
2 G

s
DH

T

C
S
D
g

gT

!fqD G
s
DH"M(s, D) is known as the mechanical enthalpy.

Only assumed stress and/or electric displacement are considered in equations
(15)}(17) in addition to assumed displacement and electric potential because the
homogenous equilibrium and charge conservation conditions can readily be
satis"ed by manipulating the stress and electric displacement shape functions.

6. FINITE ELEMENT FORMULATION

Being degenerated version of P
G
, the prerequisites and continuity requirements

on the "eld variables of P, P
D
, Pq and P

Dq are identical to those discussed in
section 4. In other words, the two compatibility conditions must be satis"ed
a priori, whereas the assumed stress and electric displacement in each element can
be independent of the ones in other elements. Zeroth order continuity of the
displacement and electric potential can be met by having displacement and electric
potential as the nodal d.o.f.s.

In section 4, superscripts are employed for subdomain designation. Superscripts
of the "eld variables will here be dropped for simplicity. Within a generic element,
the assumed "eld variables are discretized as

u"N
m
q
m
, /"N

e
q
e
, s"P

m
b
m
, D"P

e
b
e
, (18)

in which N
m

is the displacement interpolation matrix, q
m

is the vector of element
nodal displacement d.o.f.s, N

e
is the electric potential interpolation matrix, q

e
is the

vector of element nodal electric potential d.o.f.s., P
m

is the stress shape function
matrix, b

m
is the vector of stress coe$cients, P

e
is the electric displacement shape

function matrix and b
e
is the vector of electric displacement coe$cients. Moreover,

we de"ne

B
m
"D

m
N

m
, B

e
"D

e
N

e
. (19)

It has been shown that s and D need not be continuous across the element interface.
Thus, every element has its own coe$cient vectors b

e
and b

m
which can be
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condensed in the element level.
1. Finite element formulation using P"+

e
Pe*the elementwise version of P is

Pe"PXe A
1
2 G

D
m
u

D
e
/H

T

C
c
E
e

eT
!ecD G

D
m
u

D
e
/H!b11 TuB dv!Pe

S
, (20)

where Xe denotes the element domain and

Pe
S
"P

Se
t

t6 Tu ds#P
Se
u

/uN ds,

denotes the surface load acting on the element. With equations (18) and (19)
invoked

Pe"
1
2 G

q
m

q
e
H
T
keG

q
m

q
e
H!Sb1 TN

m
Tq

m
!Pe

s
, (21a)

ke"C
SBT

m
c
E
B
m
T

SBT
e
eB

m
T

SBT
m
eTB

e
T

!SBT
e
ecBe

TD is the element matrix. (21b)

2. Finite element formulation using P
D
"+

e
Pe

D
*the elementwise version of

P
D

is

Pe
D
"PXe C

1
2 G

D
m
u

D H
T

C
c
D

!h
!hT

fc D G
D

m
u

D H#DTD
e
/!b1 TuD dv!Pe

S
. (22)

With equations (18) and (19) invoked

Pe
D
"

1
2 G

q
m

b
e
H
T

C
SBT

m
c
D
B
m
T

!SPT
e
hB

m
T

!SBT
m
hTP

e
T

SPT
e
fcPe

T D G
q
m

b
e
H#bT

e
PT

e
B

e
q
e
!Sb1 TN

m
Tq

m
!Pe

S
.

(23)

Variation of b
e

results in

b
e
"SPT

e
fcPe

T~1[SPT
e
hB

m
T!SPT

e
B
e
T] G

q
m

q
e
H (24)

with which

Pe
D
"

1
2 G

q
m

q
e
H
T
ke
D G

q
m

q
e
H!Sb1 TN

m
Tq

m
!Pe

s
, (25a)

ke
D
"C

SBT
m
c
D
B
m
T

0
0
0D!C

SPT
e
hB

m
TT

!SPT
e
B

e
TTDSPT

e
fcPe

T~1[SPT
e
hB

m
T!SPT

e
B

e
T]. (25b)
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3. Finite element formulation using Pq"+
e
Peq*the elementwise version of Pq is

Peq"PXe A
!1
2 G

s
D

e
/H

T

C
s
E

!d
!dT

eq D G
s

D
e
/H#sTD

m
u!b1 Tu) dv!Pe

S
. (26)

With equations (18) and (19) invoked

Peq"
!1
2 G

b
m

q
e
H
T

C
SPT

m
s
E
P
m
T

!SBT
e
dP

m
T
!SPT

m
dTB

e
T

SBT
e
e
t
B
e
T D G

b
m

q
e
H#bT

m
SPT

m
B
m
Tq

m
!Sb1 TN

m
Tq

m
!Pe

s
.

(27)

Variation of b
m

results in

b
m
"SPT

m
s
E
P
m
T~1[SPT

m
B

m
T SPT

m
dTB

e
T] G

q
m

q
e
H (28)

with which

Peq"
1
2 G

q
m

q
e
H
T

keq G
q
m

q
e
H!Sb1 TN

m
Tq

m
!Pe

S
, (29a)

keq"C
SPT

m
B
m
TT

SPT
m
dTB

e
TTD SPT

m
s
E
P

m
T~1[SPT

m
B
m
T SPT

m
dTB

e
T]!C

0
0

0
SBT

e
eqBe

TD . (29b)

4. Finite element formulation using PqD"+
e
PeqD2the elementwise version of

PqD is

PeqD"PXe A
!1
2 G

s
DH

T

C
S
D
g

gT

!fqD G
s
DH#G

s
DH

T

G
D

m
u

D
e
/H!b1 TuB dv!Pe

S
. (30)

with equations (18) and (19) invoked

PeqD"
!1
2 G

b
m

b
e
H
T

C
SPT

m
S
D
P

m
T

SPT
e
gP

m
T

SPT
m
gTP

e
T

!SPT
e
f
e
P

e
TD G

b
m

b
e
H#G

b
m

b
e
H
T

]C
SPT

m
B

m
T

0
0

!SPT
e
B
e
TD G

q
m

q
e
H
m

!Sb1 TN
m
Tq

m
!Pe

S
. (31)

Variation of b
m

and b
e
results in

G
b
m

b
e
H"C

SPT
m
S
D
P

m
T

SPT
e
gP

m
T

SPT
m
gTP

e
T

!SPT
e
fpPe

TD
~1

C
SPT

m
B

m
T

0
0

SPT
e
B
e
TD G

q
m

q
e
H (32)
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with which

PeqD"
1
2 G

q
m

q
e
H
T
keqDG

q
m

q
e
H!Sb1 TN

m
Tq

m
!Pe

S
, (33a)

keqD"C
SPT

m
B
m
T

0
0

SPT
e
B

e
TD C

SPT
m
S
D
P

m
T

SPT
e
gP

m
T

SPT
m
gTP

e
T

!SPT
e
fpPe

TD
~1

C
SPT

m
B

m
T

0
0

SPT
e
B

e
TD .

(33b)

7. DETERMINATION OF EIGENFREQUENCIES

In eigenfrequency analysis, the surface loads vanish and the inertial force can be
incorporated as the body force, i.e., b1 "!ouK . Similar to the conventional
eigenfrequency analysis, we assume

u"u8 e*ht, /"/I e*ht, s"s8 e*ht, D"D3 e*ht and thus uK"!h2u, (34)

where quantities with tilde denote their amplitudes, t is time and h is the
eigenfrequency. In "nite element formulation and within each element,

u"N
m
q8
m
e*ht, /"N

e
q8
e
e*ht, s"P

m
b3
m
e*ht, D"P

e
b3
e
e*ht. (35)

It is trivial to show that the elementwise variational functionals in equations (20),
(22), (26) and (30) will take the following form:

Pe"e2*ht +
e

1
2 G

q8
m

q8
e
H
T
(ke#h2SoNT

m
N

m
T) G

q8
m

q8
e
H , (36)

which is stationary w.r.t. the nodal amplitude d.o.f.s. A standard eigenvalue
problem results.

8. INTERPOLATION AND SHAPE FUNCTIONS

In this section, a number of three-dimensional eight-node piezoelectric elements
will be developed. For the eight-node element as depicted in Figure 2, the
interpolation function for the ith node is

N
t
"1

8
(1#m

i
m) (1#g

i
g) (1#f

i
f), (37)

where m, g and f3[!1,#1] are the natural co-ordinates. Here, quantities with
subscripts denote their nodal counterparts. The co-ordinates, displacement and



Figure 2. An eight-node hexahedral element and its node numbering sequence.
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electric potential are interpolated as
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, (38b)

where I
i
is the ith order identity matrix. The following geometric parameters are

de"ned for subsequent use
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, (39a)

which can be worked out to be
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It has been well-known that the element based solely on the above displacement
interpolation is too sti!, susceptible to mesh distortion and aspect ratio. Ha et al.
[16] and Tzou [17] have supplemented the interpolated displacement with
Wilson's incompatible modes [24, 25]:

u"N
m
q
m
#[(1!m2)I

3
, (1!g2)I

3
, (1!f2)I

3
] G

j
1
F

j
9
H . (40)

It should be remarked that a modi"ed strain}displacement operator suggested by
Taylor et al. must be used [24]. Otherwise, the resulting element will fail the patch
test. In "nite element implementation, j

i
's are internal displacement d.o.f.s not

shared by the adjacent elements. Hence, they can be condensed in the element level.
For the assumed stress, the one in Pian's element [34, 37] is employed. The

element contains 18 stress modes which are minimal for securing the proper
element rank. The stress in the element can be expressed as

s"P
m
b
m
"[I

6
T

m
P

m
] G

b
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b
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H , (41a)

in which
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0 0 0 0 0 0

0 0 0 0 0 0

, (41b)

is the higher order contravariant stress shape function matrix and
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is the transformation matrix evaluated at the element origin for the contravariant
and Cartesian stresses. It can be proven that the above stress is in strict
homogenous equilibrium when the element Jacobian determinant is a constant.
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For the electric displacement, the minimum number of assumed modes for
securing the proper element rank is seven. To devise the electric displacement
modes, a 2]2]2 element with its natural and Cartesian co-ordinate axes parallel
is considered. The interpolated electric potential can be expressed as

/"[1 m g f mg gf fm mgf] G
t
1
F

t
8
H , (42)

where t
i
s are linear combinations of the element nodal electrical potential. The

derived electric "eld is

E"G
Em
Em
EmH"!G

L/Lm

L/Lg

L/Lf H /"!

0 1 0 0 g 0 f gf

0 0 1 0 m f 0 fm

0 0 0 1 0 g m mg G
t
1
F

t
8
H . (43)

Recalling that !E and D are energy conjugates, the four non-constant or higher
order electric "eld can be suppressed or matched by the following contravariant
electric displacement modes:

G
Dm
Dg
DfH"P

eh
b
eh
"

g 0 f gf

m f 0 fm

0 g m mg

b
eh

. (44)

For a generic element, the assumed higher order Cartesian electric displacement
can be transformed from P

eh
b
eh

. With the constant electric displacement
augmented, the complete assumed electric displacement is

D"P
e
b
e
"[I

3
T

e
P
eh

] G
b
ec

b
eh
H , (45)

where T
e

as de"ned in equation (39) is the transformation matrix for the
contravariant and Cartesian electric displacements evaluated at the element origin.
It can be shown that the above assumed electric displacement satis"es the charge
conservation condition when the element Jacobian determinant is a constant.

9. NUMERICAL EXAMPLES

In this section, a number of benchmark problems are examined. Predictions of
the following elements are included for comparisons:

H8*the irreducible element based on P, the displacement and electric potential
are given in equation (38).
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H8I*the irreducible incompatible element based on P, the electric potential and
displacement are given in equation (38) and (40) respectively.

H8D*the hybrid element based on P
D
, electric displacement is given in equation

(45) whereas displacement and electric potential are given in equation (38).
H8DI*the hybrid incompatible element based on P

D
, the electric potential,

displacement and electric displacement are given in equations (38), (40) and (45)
respectively.

H8S*the hybrid element based on Pq , stress is given in equation (41) whereas
displacement and electric potential are given in equation (38).

H8DS*the hybrid element based on P
Dq , the stress is given in equation (41),

electric displacement is given in equation (45) whereas displacement and electric
potential are given in equation (38).

In the element abbreviations, &&H'', &&8'', &&I'', &&D'', &&S'' stand for hexahedron,
eight-node, incompatible displacement, assumed electric displacement and
assumed stress respectively. All elements are evaluated by the second order
Gaussian rule which is su$cient to secure the proper element rank.

9.1. BIMORPH BEAM

The bimorph beam is presented in the text of Tzou [17]. It consists of two
identical PVDF uni-axial layers with opposite polarities, and hence will bend when
an electric "eld is applied in the transverse direction. Properties of PVDF are
extracted from reference [17] and listed in Table 1. The bimorph is here modelled
by eight elements at four elements per layer as depicted in Figure 3. With a unit
voltage applied across the thickness, the free end de#ection and normalized
bending stress at the Gaussian point &&A'' closest to the top face are computed. The
e!ect of mesh distortion on element accuracy is examined by varying &&e''. The
results are shown in Figures 4 and 5. It can be seen that H8S/H8DS are better than
H8I/H8DI whereas H8/H8D are extremely poor even at e"0. All these elements
are very sensitive to mesh distortion as a result of shear locking. Using a selective
scaling technique which was developed for alleviated shear locking in hybrid stress
solid elements [37], H8S/H8DS yield much better predictions as denoted by
H8S*/H8DS* in the "gures. H8DS* is marginally more accurate than H8S*.

9.2. CANTILEVER BEAM

The problem depicted in Figure 6 was considered by Saravanos and Heyliger
[45]. The cantilever consists of a thick layer of uni-directional graphite/epoxy and
a thin layer of PZT-4 piezoceramic adhered together. The "gure runs along the
longitudinal direction of the beam. The material properties are listed in Table 1.
The beam is modelled with a total of 5]8 elements. The piezoelectric layer is
modelled by a layer of eight elements, whereas the graphite/epoxy is modelled by
four layers of eight elements. A 12)5 kV potential di!erence is applied across the
piezoelectric layer. The computed de#ection curve is shown in Figure 7. In
obtaining the prediction from ABAQUS [46] for comparison, the cantilever is



TABLE 1

Material properties

T300/934 Gr/Epoxy PZT-4 PVDF AI

Elastic properties (in c
E
)

E
11

(GPa) 132)8 83)0 2)0 68)9
E

22
(GPa) 10)76 81)3 2)0 68)9

E
33

(GPa) 10)96 66)0 2)0 68)9
G

12
"G

13
(GPa) 5)65 31)0

G
23

(GPa) 3)61 25)6
v
12
"v

13
0)24 0)31 0)29 0)25

v
23

0)49 0)43 0)29 0)25

Piezoelectric coe.cients (in matrix d or e)
d
31

"d
32

(10~12 m/V) !122
d
33

(10~12 m/V 285
e
31

(C/m2) 0)046

Electric permittivity coe.cients (in matrix ec)
e
11
"e

22
(10~8 F/m) 1)3054 0)01062

e
33

(10~8 F/m) 1)1505 0)01062

Mass density (kg/m3) 1578 7600 1800 2769
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modelled by a total of 3]16 20-node hexahedral piezoelectric elements with one
element layer for PZT-4 and two element layers for graphite/epoxy. As ABAQUS
does not have an eight-node piezoelectric element, the 20-node hexahedral element
with designation C3D20E is selected [46]. The element is irreducible and fully
integrated by the third order quadrature. In Figure 7, the results of Koko et al. [20]
were calculated by 2]8 elements 20-node composite elements. Predictions of all
the eight-node elements are in between those of Koko et al. [20] and ABAQUS. As
the beam is quite thick, even H8/H8D can yield accurate results.

With graphite/epoxy replaced by aluminium (see Table 1 for material properties),
eigenfrequencies of the structure is computed. Two circuit arrangements are
considered. The "rst is an open circuit in which the bottom surface of the PZT-4
layer is grounded. The second is a closed circuit in which the top and bottom
surfaces of the PZT-4 layer are both grounded. The ten lowest eigenfrequencies are
presented in Tables 2 and 3. H8/H8D are sti!est as the predicted frequencies are
much higher than that by H8I/H8DI, and H8S/H8DS. The tables also list the
predictions given by Koko et al. [20] and evaluated by ABAQUS. All the results
are based on the same meshes described in the previous paragraph.

It can be seen in Tables 2 and 3 that the "rst six frequencies predicted by
H8I/H8DI and H8S/H8DS are in good agreement with those of Koko et al. and
ABAQUS. The di!erences are in the order of 0)5%. When the beam is modelled by



Figure 3. A bimorph cantilever.

Figure 4. E!ect of mesh distortion on the end de#ection of the bimorph cantilever in Figure 3;
H8S* and H8DS* employ the selective scaling technique [37]: *d* H8, H8D; *** HBI, H8D;
*n* H8S, H8DS; *h* H8S; H8DS; ** analytical [17].
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denser meshes, the di!erence in the higher order frequencies are reduced. For
instance, the seventh and tenth frequencies predicted by 5]16 H8I/H8DI elements
are 8803 and 16 095 Hz whereas the same frequencies predicted by the same
number of H8S/H8DS elements are 8781 and 16 045 Hz under the open-circuit
arrangement. The dynamic predictions of H8S/H8DS are slightly more accurate
than those of H8I/H8DI.



Figure 5. E!ect of mesh distortion on the bending stress q
xx

in the bimorph cantilever, see Figure 3;
H8S* and H8DS* employ the selective scaling technique [37]: *d* H8, H8D; *** HBI, H8DI;
*n* H8S, H8DS; *h* H8S; *d* H8DS; ** analytical [17].

Figure 6. A cantilever with an adhered piezoelectric layer.
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9.3. SIMPLY SUPPORTED LAMINATED SQUARE PLATE WITH BONDED PZT-4 LAYERS

The problem portrayed in Figure 8 was "rst considered by Saravanos and
Heyliger [22]. The structure is a simply supported square plate made of T300/934
graphite/epoxy with lay up [0/90/0]. Two layers of the PZT-4 are bonded to the
top and bottom surface of the plate. The material properties have been given in
Table 1. The length of the plate ¸ is 0)4 m and its total thickness h is 0)008 m. The
surfaces of the PZT-4 layers in contact with the graphite/epoxy laminate are
grounded. Owing to symmetry, only the lower left hand quadrant of the structure is
analyzed. Using one layer of elements for each of the lamina and PZT-layer,
5]4]4 and 5]8]8 eight-node elements are employed for an eigenfrequency
analysis. For comparison, the problem is also attempted by ABAQUS with
5]8]8 C3D20E 20-node elements. The ten lowest computed frequencies are listed
in Table 4. It can be noted that H8S/H8DS are more accurate than H8I/H8DI,
especially for the higher frequencies using the coarse mesh. Again, H8DS are
marginally more accurate than H8S.



Figure 7. De#ection curve of the cantilever shown in Figure 6 under electric loading: d H8, H8D;
* H8I, H8DI, H8S, H8DS; *n* Koko et al. [20]; ** ABAQUS.

TABLE 2

Eigen frequencies (Hz) of Al beam with a PZ¹-4 layers under open circuit, see
Figure 6

Model H8I H8 H8S H8ID H8D H8DS Koko ABAQUS
(no. of [20]

elements) (5]8) (5]8) (5]8) (5]8) (5]8) (5]8) (2]8) (3]16)

1 562)1 690)0 559)6 562)1 690)0 559)7 556)4 557)8
2 819)5 934)4 815)9 819)6 934)4 815)7 818)3 820)3
3 3447)9 4166)1 3433)3 3448)5 4166)1 3434)5 3307)6 3308)1
4 4305)0 4313)2 4288)0 4305)0 4313)2 4288)0 4323)5 4262)2
5 4807)4 5365)4 4789)4 4807)8 5365)4 4789)3 4651)6 4664)9
6 7771)2 7789)3 7762)4 7771)4 7789)4 7763)1 7721)8 7736)7
7 9503)0 11 243 9455)0 9506)5 11 243 9459)9 8629)0 8603)8
8 12 388 13 030 12 351 12 389 13 030 12 352 11 490 11 485
9 13 252 13 807 13 166 13 253 13 807 13 167 13 047 12 880

10 18 392 21 259 18 280 18 403 21 259 18 293 15 564 15 428
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9.4. SIMPLY SUPPORTED LAMINATED SQUARE PLATE WITH BONDED PVDF LAYERS

The problem has been considered by Saravanos et al. [13], see Figure 8. It
consists of three graphite/epoxy laminae plied at [90/0/90] and two PVDF layers
bonded to the top and bottom surfaces. The material properties are listed in Table
5. The total thickness h is 0)01 m and the length to thickness ratio, ¸/h, is 4. Two
load cases are considered. In the "rst one, a double-sinusoidal electric potential



TABLE 3

Eigen frequencies (Hz) of Al beam with a PZ¹-4 layers under closed circuit, see
Figure 6

Model H8I H8 H8S H8ID H8D H8DS Koko ABAQUS
(no. of [20]

elements) (5]8) (5]8) (5]8) (5]8) (5]8) (5]8) (2]8) (3]16)

1 556)4 683)8 554)3 556)5 683)8 554)5 551)4 551)4
2 816)7 928)4 812)5 816)7 928)4 812)6 817)2 816)4
3 3417 4133 3404 3417 4133 3405 3280 3273
4 4305 4313 4288 4305 4313 4288 4324 4262
5 4794 5337 4773 4794 5337 4774 4646 4646
6 7738 7752 7730 7739 7752 7731 7689 7699
7 9428 11 172 9389 9429 11 172 9392 8573 8522
8 12 364 13 022 12 325 12 364 13 022 12 325 11 479 11 449
9 13 247 13 759 13 158 13 247 13 759 13 160 13 046 12 874

10 18 276 21 160 18 184 18 278 21 160 18 192 15 491 15 297

Figure 8. A quadrant of a simply supported three-ply composite plate with two adhered
piezoelectric layers. AA@ is the centre of the plate.
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given as

/M "sin
nx
¸

sin
ny
¸

(46a)

is applied to the top surface of the structure whereas the bottom surface and all the
vertical edges are grounded. In the second case, a double-sinusoidal load:

t6
z
"sin

nx
¸

sin
ny
¸

(46b)



TABLE 4

Eigen frequencies (Hz) of simply supported laminates with PZ¹-4 layers, see Figure 8

Mode H8 H8I H8S H8DI H8DS H8 H8I H8S H8DI H8DS ABAQUS
no. (4]4) (4]4) (4]4) (4]4) (4]4) (8]8) (8]8) (8]8) (8]8) (8]8) (8]8)

1 439)0 239)2 235)6 239)2 235)5 296)3 232)6 232)4 232)6 232)4 231)4
2 2731)0 1242)0 1205)0 1243)0 1204)0 1553)0 1064)0 1063)0 1065)0 1063)0 1024)0
3 3071)0 1610)0 1578)0 1612)0 1577)0 1852)0 1396)0 1395)0 1396)0 1395)0 1342)0
4 4216)0 2658)0 2317)0 2660)0 2306)0 2625)0 2075)0 2061)0 2076)0 2058)0 1984)0
5 5975)0 4349)0 4212)0 4359)0 4209)0 4264)0 2866)0 2862)0 2868)0 2862)0 2568)0
6 8138)0 5339)0 4930)0 5349)0 4905)0 4956)0 3721)0 3679)0 3724)0 3672)0 3358)0
7 8634)0 5964)0 5209)0 5965)0 5209)0 5019)0 3726)0 3722)0 3729)0 3722)0 3382)0
8 9276)0 6142)0 5680)0 6150)0 5665)0 5512)0 4304)0 4262)0 4307)0 4257)0 3900)0
9 9571)0 6850)0 5964)0 6859)0 5963)0 5935)0 5710)0 5579)0 5714)0 5563)0 4738)0

10 9660)0 8133)0 7388)0 8133)0 7347)0 7139)0 5817)0 5809)0 5824)0 5808)0 5083)0
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TABLE 5

Material properties for the piezoelectric laminate

Graphite/epoxy PVDF

Elastic coe.cients (in matrix c
E
)

c
11

(GPa) 134)9 238)0
c
22

(GPa) 14)35 23)6
c
33

(GPa) 14)35 10)6
c
12

(GPa) 5)156 3)98
c
13

(GPa) 5)156 2)19
c
23

(GPa) 7)133 1)92
c
44

(GPa) 3)606 2)15
c
55

(GPa) 5)654 4)40
c
66

(GPa) 5)654 6)43

Piezoelectric coe.cients (in matrix e)
e
31

(C/m2) !0)13
e
32

(C/m2) !0)14
e
33

(C/m2) !0)28
e
25

"e
16

(C/m2) !0)01

Permittivity coe.cients (in matrix ec)
e
11

/e
0

3)5 12)50
e
33

/e
0
"e

22
/e

0
3)0 11)98

e
0

(permittivity of free space) 8)854]10~12 (F/m)

Figure 9. Variation of q
xx

along AA@ for the simply supported laminated plate under an
applied double-sinusoidal electric potential, see Figure 8: d H8, H8S; *H8DI; n H8DS; **
Analytical [13].
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Figure 10. Variation of q
yz

along BB@ for the simply supported laminated plate under an applied
double-sinusoidal electric potential, see Figure 8: d H8I, H8S; ] H8DI, H8DS;** analytical [13].

Figure 11. Distorted mesh for the lower left-hand quadrant of the laminated plate, see Figure 8.
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is applied to the top surface of the structure whereas all the vertical edges, top and
bottom surfaces are grounded. Same as the previous example, only one-quarter of
the structure needs to be analyzed. Three element layers are used to model each
PVDF layer and two-element layers are used to model each lamina. Hence, a total
of 12-element layers are employed in the thickness direction. In constant z-plane,
a 4]4 mesh is used. To obtain the stress and electric displacement along AA@ and
BB@, their values at the second order quadrature points are extrapolated to the
mid-points, which are optimal for linear elements, of the element edges coincident
with AA@ and BB@.

Under the double-sinusoidal electric potential, q
xx

along AA@ and q
yz

along BB@
are plotted in Figures 9 and 10 respectively. H8I/H8DI and H8S/H8DS are all in
good agreement with the exact solutions whereas the elements with independently



Figure 12. E!ect of mesh distortion on the central vertical de#ection of the simply supported
laminated plate under an applied double-sinusoidal electric potential, see Figure 11:*d*H8I, H8S;
*** H8DI; *n* H8DS; ** analytical [13].

Figure 13. Variation of q
xx

along AA@ of the simply supported laminated plate under an applied
double-sinusoidal mechanical load, see Figure 11: n H8S, H8DS, H8I, H8DI (5 layers); d H8S, H8DS,
H8I, H8DI (12 layers); **analytical [13].
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assumed electric displacement, i.e, H8DI and H8DS, are marginally more accurate
than their counterparts without assumed electric displacement, i.e. H8I and H8S
respectively. The e!ect of mesh distortion on the central de#ection is studied by
varying the length &&e'' in Figure 11, the results of which are shown in Figure 12. It is
seen that the assumed electric displacement can improve the element accuracy. The
most accurate element is H8DS.

Under the double-sinusoidal mechanical load, q
xx

along AA@, shear stress q
yz

along BB@, electric potential / along AA@ and electric displacement D
z
along AA@

are plotted in Figures 13}16. In Figures 13 and 14, the predictions using "ve



Figure 14. Variation of q
yz

along BB@ of the simply supported laminated plate under an applied
double-sinusoidal mechanical load, see Figure 8: d H8I, H8DI, H8S, H8DS (5 layers); n H8I, H8DI,
H8S, H8DS (12 (layers); ** analytical [13].

Figure 15. Variation of electric potential along AA@ of the simply supported laminated plate under
an applied double-sinusoidal mechanical load, see Figure 8: d H8I, H8S; * H8DI, H8DS; **
analytical [13].
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element layers (one for each of the PVDF layer and graphite/epoxy lamina) are also
obtained. All elements yield accurate q

xx
, q

yz
and /. For D

z
shown in Figure 16, all

elements yield accurate results in the graphite/epoxy laminate. The ones with
assumed electric displacements are the better performers in the PVDF layers. The
observation that H8DI and H8I are more accurate, respectively, than H8DS and
H8S in the PVDF layers is due to the better ful"llment of the mechanical boundary
conditions in H8DI and H8I as a result of the enforcement by the incompatible
displacement modes, see equation (6). Moreover, the incompatible modes provide
a linear thickness variation of the transverse normal stress whereas the assumed



Figure 16. Variation of D
z

along AA@ of the simply supported laminated plate under an applied
double-sinusoidal mechanical load, see Figure 8: e H8I (4]4); h H8S (4]4); n H8DI (4]4); s H8DS
(4]4); r H8I (12]12); j H8S (12]12); m H8DI (12]12); d H8DS (12]12); ** analytical [13].

Figure 17. E!ect of mesh distortion on the central vertical de#ection of the simply supported
laminated plate under an applied double-sinusoidal mechanical load, see Figure 11:*d*H8I, H8DI;
*** H8S, H8DS; ** analytical [13].
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transverse normal stress modes in H8S and H8DS are constant w.r.t. the thickness
co-ordinate.

The e!ect of mesh distortion on the predicted central de#ection can be seen in
Figure 17. The assumed stress elements are more accurate than the incompatible
elements.

10. CLOSURE

For piezoelectricity, the irreducible formulation is the one employing
independently assumed displacement and electric potential. In this paper, hybrid
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eight-node hexahedral "nite element models are formulated by employing
variational functionals with assumed electric displacement, assumed stress and
both. Compared with the irreducible elements, the present hybrid elements are
found to be more accurate as well as less sensitive to element distortion and aspect
ratio.
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